If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-2880=0
a = 1; b = 4; c = -2880;
Δ = b2-4ac
Δ = 42-4·1·(-2880)
Δ = 11536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11536}=\sqrt{16*721}=\sqrt{16}*\sqrt{721}=4\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{721}}{2*1}=\frac{-4-4\sqrt{721}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{721}}{2*1}=\frac{-4+4\sqrt{721}}{2} $
| 2+-0.625k=9 | | p-65=86 | | -7x-3x+10=-8x-8 | | f-3=14 | | 5(y-7)-8y=-14 | | 2(3x+9)=5+6x | | 4.9t^2+6t+2.5=0 | | 2/3w+24/3=3w-6 | | 26=8=v | | 24+(n/4)=10 | | -5(5v-6)+8v=-123 | | 17x+12=36-7x | | 5(4c+1)-2c=-13 | | 15x=8/5 | | 12a+15=35+2a | | 5x−11x=36 | | y2+4.891y-5.8940=0 | | 8=-4(a-6)-4(-6a-1) | | -7x-3x+10=8x-8 | | c-10=-7 | | 2(4x+2)=4x12(x-1) | | 7(n-5)(n+4)=0 | | ((3+y)/2)=6 | | x+5/3=8/5 | | 0=a/15 | | 11-x=3x+3 | | -7b+4(2b-3)=18 | | 27+y=42 | | -3(4n+5)=17-4n | | r-2=96 | | 4(z+3)-4=8(1/2z+1) | | 8a-8(a-5)=16a-14 |